Dimeric and Trimeric Hydrolyzable Tannins from Quercus coccifera and Quercus suber

Hideyuki Ito, ${ }^{\dagger}$ Koji Yamaguchi, ${ }^{\dagger}$ Tae-Hoon Kim, ${ }^{\dagger}$ Seddik Khennouf, \ddagger Kamel Gharzouli, \ddagger and Takashi Yoshida*,† Faculty of Pharmaceutical Sciences, Okayama University, Tsushima, Okayama, 700-8530, J apan, and Faculty of Science, University Ferhat Abbas, 19000, Setif, Algeria

Received September 26, 2001

Abstract

Three new hydrolyzable tannins, cocciferins $D_{1}(\mathbf{1}), D_{2}(\mathbf{2})$, and $T_{1}(4)$, were isolated from the leaves of Quercus coccifera. Cocciferin $D_{2}(\mathbf{2})$ and two additional new tannins, cocciferins D_{3} (3) and T_{2} (5), were al so obtained from the leaves of Quercus suber. Their oligomeric structures were elucidated on the basis of spectroscopic methods and chemical evidence. Compounds 2, 3, and 5 were rare oligomers possessing glucose cores with both open-chain and pyranose forms.

The wood, bark, and leaves of Quercus species (F agaceae) are rich sources of ellagitannins and condensed tannins. The aqueous extract of Quercus coccifera L. was reported to show potent antimicrobial activity against Streptococcus aureus, though no active principles were assigned. ${ }^{1}$ The outer bark of Quercus suber L., which is a common tree of the Mediterranean region, is well known as a material of stoppers and corkboards used for insulation. The occurrence of triterpenoids, ${ }^{2,3}$ lignins, ${ }^{4}$ tannins, ${ }^{4}$ and phenylpropanoids, ${ }^{5}$ besides the major component, suberin, in the cork was reported. However, the tannins and related polyphenols of the leaves of the above two plants have been little investigated. This paper deals with the isolation and structural elucidation of five new hydrolyzable tannins from the leaves of Q. coccifera and Q. suber.

Results and Discussion

A concentrated 70\% aqueous acetone homogenate of the dried leaves of Q. coccifera was extracted successively with $\mathrm{Et}_{2} \mathrm{O}, \mathrm{EtOAc}$, and $\mathrm{n}-\mathrm{BuOH}$ to give respective extracts and a water-soluble portion. The EtOAc extract was subjected to a combination of column chromatography over Toyopearl HW-40, MCI GEL CHP-20P, and/or YM C-gel ODS-AQ 12050 S to afford a new ellagitannin dimer named cocciferin $\mathrm{D}_{1}(\mathbf{1})$ and nine known tannins and related polyphenols, (+)-catechin, ellagic acid, valoneic acid dilactone, pedunculagin, ${ }^{6}$ casuarictin, ${ }^{6}$ tellimagrandin II, ${ }^{7}$ kaempferol 3-O($6^{\prime \prime}$-O-galloyl)- β-D-glucopyranoside, ${ }^{8}$ and phillyraeoidins A and $\mathrm{E} .{ }^{9}$ The $\mathrm{n}-\mathrm{BuOH}$ extract was similarly chromatographed to give a new ellagitannin trimer, cocciferin T_{1} (4), along with acutissimin $B^{10,11}$ and phillyraeoidins B and C. ${ }^{9}$ A new dimeric ellagitannin, cocciferin D_{2} (2), and three known C-glucosidic ellagitannins, acutissimin B, castalagin, ${ }^{12,13}$ and vescalagin, ${ }^{13,14}$ were isolated from the watersoluble portion by a similar separation procedure.

The concentrated aqueous acetone homogenate from the leaves of Q . suber was treated in a way similar to Q . coccifera to yield two new tannins, cocciferins $D_{3}(3)$ and $\mathrm{T}_{2}(5)$, along with cocciferin $\mathrm{D}_{2}(\mathbf{2})$ and 13 known tannins and related polyphenols. The known compounds wereidentified as (+)-gallocatechin, quercetin, quercitrin, pedunculagin, acutissimin B, castalagin, vascalagin, tellimagrandin I, ${ }^{7}$ castavaloninic acid, ${ }^{15}$ isocastaval oninic acid, ${ }^{16}$ mongol icain $A,{ }^{17}$ and desgalloylstachyurin. ${ }^{18}$

[^0]Cocciferin D_{1} (1) was found to be a dimeric hydrolyzable tannin with the molecular formula $\mathrm{C}_{75} \mathrm{H}_{56} \mathrm{O}_{48}$, as indicated by ESIMS [m/z $1742\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}$] and NMR analyses. The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1}$ was complicated owing to the formation of a mixture of α - and β-anomers (4:1), and each signal appeared essentially in duplicate. The presence of six galloyl groups and one valoneoyl group was indicated by paired aromatic signals due to six 2 H singlets and three 1 H singlets. These acyl components were chemi cally identified by production of methyl tri-O-methylgallate (9) and trimethyl octa-O-methylvaloneate (10) upon methylation of $\mathbf{1}$ with dimethyl sulfate and potassium carbonate in acetone and subsequent methanolysis. Assignment of the sugar proton signals by ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY revealed the presence of two sets of Cl glucopyranose cores (Table 1). The signals of C-6 methylene protons on the fully acylated glucose core (glucose I) showed a large difference ($\Delta \delta 1.52 \mathrm{ppm} ; \delta 5.27$ and 3.75) in their chemical shifts, indicating the presence of a valoneoyl group bridged on 0-4/0-6.7,19 It was thus implied that the monomeric constituent units of cocciferin D_{1} are 2,3,4,6-tetra-O-galloyl-D-glucose (12) ${ }^{20}$ and tellimagrandin II (13). This was supported by close resemblance of the sugar carbon resonances in the ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1}$ (Table 1) to those of the proposed monomeric units. ${ }^{13}$ On the basis of these data, cocciferin D_{1} was deduced to be an ellagitannin dimer, which might be produced biogenetically by intermolecular $\mathrm{C}-\mathrm{O}$ oxidative coupling between a hexahydroxydiphenoyl (HHDP) group of $\mathbf{1 2}$ and a galloyl group of $\mathbf{1 3}$ forming a val oneoyl group. The location of the valoneoyl group in 1 was determined by the HMBC spectrum as follows. The H-6 signal ($\delta 5.27,3.75$) on glucose I was correlated through three-bond coupling with an ester carbonyl carbon resonance (δ 167.8), which, in turn, showed a correlation with the aromatic proton at $\delta 6.17$. This aromatic proton was assigned to $\mathrm{H}-3^{\prime}$ of the val oneoyl group on the basis of its correlation through two-bond coupling with the signal attributed to the ethereal carbon resonance C-4' (δ 146.7) ${ }^{19}$ of the valoneoyl group. The remaining valoneoyl protons (H-3 and H-6") as well as the other acyl protons were similarly correlated through respective carbonyl carbons with glucose protons as illustrated in the formula (Figure 1). This structural assignment was chemically supported by partial hydrolysis yielding 2,3,6-tri-O-galloyl-D-glucose (14) and rugosin A (15). ${ }^{21}$ The atropisomerism of the chiral valoneoyl group was determined to be S-series by a large positive Cotton effect at 226 nm ($[\theta]$ $+1.2 \times 10^{5}$) in the circular dichroism (CD) spectrum ${ }^{22}$ and

Table 1. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectral Data for the Sugar Moieties of Compounds $\mathbf{1}-\mathbf{5}$ in Acetone $-\mathrm{d}_{6}+\mathrm{D}_{2} \mathrm{O}^{\mathrm{a}}$

${ }^{\text {a }}{ }^{1} \mathrm{H}$ NMR, 500 MHz , coupling constants (J in Hz) in parentheses; ${ }^{13} \mathrm{C}$ NMR, 126 MHz .
by the production of $\mathbf{1 5}$ as a partial hydrolysate of $\mathbf{1}$. On the basis of these findings, the structure of cocciferin D_{1} was established as $\mathbf{1}$, which corresponds to a degalloyl derivative of phillyraeoidin A (6).
Phillyraeoidins A (6), B (7), and C (8) were first isolated from Quercus phillyraeoides. ${ }^{9}$ However, the binding sites of the val oneoyl group in the reported structures remained unassigned. The HMBC experiments of these dimers gave three-bond correlations of the val oneoyl protons-carbonyl carbons-glucose protons similar to those in 1. The orientations of the val oneoyl group in phillyraeoidins A, B, and C were thus established as shown in the formulas $\mathbf{6}, \mathbf{7}$, and 8, respectively.

Cocciferins $D_{2}(\mathbf{2})$ and $D_{3}(\mathbf{3})$ were isolated as light brown amorphous powders, and their molecular formulas ($\mathbf{2}$, $\mathrm{C}_{82} \mathrm{H}_{52} \mathrm{O}_{52} ; 3, \mathrm{C}_{68} \mathrm{H}_{46} \mathrm{O}_{44}$) were deduced by ESIMS and NMR analyses. The ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{2}$ and $\mathbf{3}$ exhibited the sugar proton signals characteristic of an open-chain glucose and a glucopyranose with the C_{1} conformation, respectively
(Table 1). Upon methylation with dimethyl sulfate and potassium carbonate followed by methanolysis, 2 and $\mathbf{3}$ gave common products, trimethyl octa-O-methylval oneate (10) and dimethyl hexamethoxydiphenate (11). The ${ }^{1} \mathrm{H}$ NMR spectrum of 2 showed eight 1 H singlets in the aromatic region. The signals due to sugar moieties in the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra (Table $\mathbf{1}$) of $\mathbf{2}$ suggested that $\mathbf{2}$ is a dimer composed of monomeric units, casuarictin (16) and castalagin (17). The location of the val oneoyl group in 2 was determined from the HMBC spectrum measured in methanol $-\mathrm{d}_{4}$ at $45^{\circ} \mathrm{C}$, which showed three-bond correlations $\delta_{\mathrm{H}} 6.447$ (valoneoyl $\mathrm{H}_{\mathrm{H}}-3$) $-\delta_{\mathrm{C}} 167.8$ (carbonyl)- δ_{H} 5.09 (glucose H-4'); $\delta_{H} 7.28$ (valoneoyl $\mathrm{H}_{\mathrm{A}}-6$) $-\delta_{C} 165.7$ (carbonyl)- $\delta_{H} 6.12$ (glucose $\mathrm{H}-1$); $\delta_{H} 6.60$ (valoneoyl H_{J} 3) $-\delta_{C} 170.9$ (carbonyl)- $\delta_{H} 3.99$ (glucose $\mathrm{H}-6^{\prime}$). The location of the other acyl groups was also indicated by HMBC correlations as shown in the formula 2 (Figure 1). Partial hydrolysis of $\mathbf{2}$ in hot water gave pedunculagin (18) as a hydrolysate.

1: $R^{1}=(\beta)-O G, R^{2}=R^{3}=G, R^{4}=O H$
6: $R^{1}=R^{4}=(\beta)-O G, R^{2}=R^{3}=G$
7: $R^{1}=O H, R^{2}=R^{3}=G, R^{4}=(\beta)-O G$
8: $R^{1}=R^{4}=(\beta)-O G, R^{2}=R^{3}=H$

9

10

Figure 1. Structures and selected HMBC correlations of 1-3 and structures of 6-11 (compounds in parentheses mean consistent units). $\mathrm{G}=$ galloyl.

The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3}$ was similar to that of 2, except for the absence of signals due to a second HHDP group. Among the signals of the C1 glucopyranose core of 3, the $\mathrm{H}-2$ and $\mathrm{H}-3$ resonances [$\delta 3.49$ (dd, J $=8,9 \mathrm{~Hz}$) and $\delta 3.71$ ($\mathrm{br} \mathrm{t}, \mathrm{J}=9 \mathrm{~Hz}$)], assigned via ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY, appeared in the high-field region, indicating the absence of acylation at C-2 and C-3 (Table 1). This was substantiated by partial hydrolysis of 3, which yielded 4, 6-(S)-HHDP-d-glucose (26). Six aromatic signals (each 1H, s) in the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3}$ were consistent with the presence of a valoneoyl, an HHDP, and a flavogallonyl unit as the acyl groups in the molecule. In addition, the ESIMS spectrum of 3 exhibited an ion peak at m/z 1584 (M + $\left.\mathrm{NH}_{4}\right)^{+}$, which is 302 mass units, corresponding to an HHDP group $\left(\mathrm{C}_{14} \mathrm{H}_{6} \mathrm{O}_{8}\right)$ lower than that of 2 [$\mathrm{m} / \mathrm{z} 1886(\mathrm{M}+$ $\left.\mathrm{NH}_{4}\right)^{+}$]. The monomeric constituents of $\mathbf{3}$ were thus assumed to be castalagin (17) and strictinin (19). ${ }^{6,13}$ This was supported by close similarity of the sugar resonances of $\mathbf{3}$ to those of 17 and 19 in the ${ }^{13} \mathrm{C}$ NMR spectra (Table 1). The binding modes of the acyl groups in $\mathbf{3}$ were evidenced from the HMBC correlations in a manner similar to 2 (Figure 1). The S-configuration of the val oneoyl and HHDP groups in $\mathbf{2}$ and $\mathbf{3}$ was confirmed by a large positive Cotton effect around at 235 nm in the CD spectra. ${ }^{22}$ On the basis of these data, the structures of cocciferin D_{2} and D_{3} were established as formulas 2 and 3.

The trimeric nature of cocciferins $T_{1}(4)$ and $T_{2}(5)$ was shown by their ESIMS [4, m/z $2676\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+} ; 5, \mathrm{~m} / \mathrm{z}$ $2670\left(\mathrm{M}+\mathrm{NH}_{4}\right)^{+}$] and retention times which were larger
than those of other dimeric hydrolyzable tannins on normal-phase HPLC. ${ }^{23}$ Methylation of $\mathbf{4}$ and 5 and subsequent methanolysis gave commonly $\mathbf{9 , 1 0}$, and 11, indicating the presence of galloyl, HHDP, and valoneoyl groups in both tannins. In the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 4, the resonances in the aliphatic region were similar to those of pedunculagin (18) and phillyraeoidin A (6), both of which co-occur in Q. coccifera (Table 1). The ${ }^{1} \mathrm{H}$ NMR spectrum of 4 displayed six 2 H singlets and eight 1 H singlets in the aromatic region, the latter of which appeared as duplicate signals (see Experimental Section), suggesting the presence of six galloyl groups, an HHDP group, and two valoneoyl groups in the molecule. On the basis of these data, cocciferin T_{1} was presumed to be a trimeric hydrolyzable tannin composed of phillyraeoidin A (6) and pedunculagin (18). The linkage mode of each acyl unit in 4 was established by partial degradation of 4 in hot water, which afforded phillyraeoidin B (7), praecoxins A (20) and D (21), ${ }^{24}$ and 2,3-(S)-HHDP-d-glucose (22) ${ }^{25}$ as the partial hydrolysates (Figure 2). The S-configuration at the chiral HHDP and valoneoyl groups in 4 was evident from the production of the above partial hydrolysates and also by the strong positive Cotton effect at 225 and 239 nm in the CD spectrum of 4. Consequently, the structure of cocciferin T_{1} was elucidated as 3 , which is the first trimeric hydrolyzable tannin found in Quercus species.

On the basis of the assignments of the ${ }^{1} \mathrm{H}$ NMR signals using the ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of 5 , cocciferin T_{2} was deduced to be a trimeric hydrolyzable tannin composed of

22 : R=R'=H

21 : R, R'=

Figure 2. Structures of $\mathbf{4}$ and its degradation products (compounds in parentheses mean consistent units).
an open-chain glucose and two C1 glucopyranose cores (Table 1). The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5}$ showed a duplication of some sugar signals owing to an anomer mixture ($\alpha: \beta=$ 1:4), suggesting that one of two C_{1} glucopyranose cores has a free hydroxyl group at the anomeric center. The spectrum also displayed a 2 H singlet ascribable to a galloyl group and $11 \mathrm{1H}$ singlets due to one flavogallonyl, two HHDP, and two valoneoyl groups in the aromatic region. The resonances due to the sugar moieties in the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra (Table 1) were similar to those of cocciferin D_{2} (2) and tellimagrandin I (23). One of the valoneoyl groups in 5 should thus result from intermolecular $\mathrm{C}-\mathrm{O}$ coupling between a galloyl group of $\mathbf{2 3}$ and an HHDP group of 2. The location of the valoneoyl group was evidenced from the HMBC spectrum [$\delta_{H} 6.16$ (valoneoyl $\mathrm{H}_{\mathrm{F}}-3$) $-\delta_{\mathrm{C}} 169.2$ (carbonyl) $-\delta_{\mathrm{H}} 5.10$ (glucose $\mathrm{H}-2^{\prime}$); $\delta_{\mathrm{H}} 6.98$ (valoneoyl $\mathrm{H}_{\mathrm{A}^{-}}$ 3) $-\delta_{\mathrm{C}} 169.4$ (carbonyl) $-\delta_{\mathrm{H}} 5.15$ (glucose H-2); $\delta_{\mathrm{H}} 6.63$ (valoneoyl $\mathrm{H}_{\mathrm{G}}-3$) $-\delta_{\mathrm{C}} 164.9$ (carbonyl)- $\delta_{\mathrm{H}} 5.41$ (glucose $\left.\left.\mathrm{H}-3^{\prime}\right)\right]$. The other HMBC correlations led to the structure 5 for this trimer (Figure 3). Chemical evidence for the proposed structure 5 was obtained by partial hydrolysis of 5 in hot water, giving castavaloninic acid (24), cornusiin B (25), ${ }^{26}$ 4,6-(S)-HHDP-d-glucose (26), gemin D (27), ${ }^{27}$ and camelliatannin H (28), ${ }^{28}$ which were identified by HPLC comparison with authentic specimens (Figure 3). The CD spectrum of 5 showed an intensive positive Cotton effect at 232 and 237 nm , establishing the chiralities of biphenyl moieties in 5 to be all S-configurations. On the basis of these findings, the structure of cocciferin T_{2} was el ucidated as 5. Cocciferin T_{2} is the first example of a trimeric hydrolyzable tannin composed of a C-glucosidic tannin

24

Figure 3. Structures of $\mathbf{5}$ and its degradation products (compounds in parentheses mean consistent units).
monomer and ellagitannins with a C1 glucopyranose core.
Cocciferins $D_{1}(\mathbf{1})$ and $T_{1}(4)$ as well as phillyraeoidins A, B, and C isolated from Q. coccifera have a galloyl moiety of the valoneoyl group at O-4 of one monomer and an HHDP moiety at 0-4/O-6 of the other monomer. It is noteworthy that this type of oligomer has been previously found only in Q. phillyraeoides (phillyraeoidins A-D) ${ }^{9}$ and melastomataceous plants (nobotanins). ${ }^{13}$

Experimental Section

General Experimental Procedures. Optical rotations were measured on a J ASCO DIP-1000 polarimeter, UV spectra on a HITACHI U-2001 spectrophotometer, and CD spectra on a J ASCO J-720W spectrometer. ESIMS was performed with a Micromass Auto Spec OA-TOF spectrometer using 50\%

MeOH containing $0.1 \% \mathrm{NH}_{4} \mathrm{OAc}$ as a solvent. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C} \mathrm{NMR}$ spectra were recorded on a Varian VXR-500 (500 MHz for ${ }^{1} \mathrm{H}$ and 126 MHz for ${ }^{13} \mathrm{C}$), and chemical shifts are given in δ (ppm) values relative to that of the sol vent [acetone- $d_{6}\left(\delta_{H} 2.04 ; \delta_{C}\right.$ 29.8), methanol-d ${ }_{4}\left(\delta_{H} 3.35 ; \delta_{C} 49.0\right)$] on a tetramethylsilane scale. The standard pulse sequences programmed for the instrument (VXR 500) were used for each 2D measurement. J сн was set at 6 Hz in the HMBC spectra. Normal-phase HPLC was conducted on a YMC-Pack SIL A-003 (YMC Co. Ltd.) column (4.6 i.d. $\times 250 \mathrm{~mm}$) developed with n -hexaneMeOH -tetrahydrofuran-formic acid (60:45:15:1) containing oxalic acid ($500 \mathrm{mg} / \mathrm{L}$) (flow rate, $1.5 \mathrm{~mL} / \mathrm{min}$; detection, 280 nm) at room temperature. Reversed-phase HPLC was performed on a YMC-Pack ODS-A A-302 (4.6 i.d. $\times 150 \mathrm{~mm}$) (YMC Co., Ltd.) column developed with $10 \mathrm{mM} \mathrm{H} 3_{3} \mathrm{PO}_{4}-10 \mathrm{mM}$ $\mathrm{KH}_{2} \mathrm{PO}_{4}-\mathrm{EtOH}-E t O A c$ (40:40:15:5, solvent A; 42.5:42.5:10: 5 , solvent B; 47.5:47.5:3:2, solvent C) or 60% aqueous MeOH (solvent D) (flow rate, $1.0 \mathrm{~mL} / \mathrm{min}$; detection, 280 nm) at 40 ${ }^{\circ} \mathrm{C}$. Column chromatography was performed with Diaion HP20 and MCI GEL CHP-20P (Mitsubishi Kasei Co.), Toyopearl HW-40 (coarse grade) (Tosoh Co.), YMC-GEL ODS AQ 12050S (YMC Co., Ltd.), Sephadex LH-20 (Pharmacia Fine Chemicals Co., Ltd.), and Mega Bond Elut C_{18} (Varian Inc.).

Plant Materials. Quercus coccifera L. and Q. suber L. were collected in EI Kala National Park, Province of Attaref, Algeria, in April 1996 and November 1995, respectively. These plants were identified by Dr. Kaabache Mohamed, Laboratory of Phytosociology, Faculty of Science, University Ferhat Abbas, Setif, Algeria. Voucher specimens are deposited at the L aboratory of Phytosociol ogy, UFA.

Extraction and Isolation. A homogenate, in 70\% aqueous acetone ($2 \mathrm{~L} \times 3$), of the dried leaves (300 g) of Q. coccifera was filtered. The filtrate was concentrated and extracted with $\mathrm{Et}_{2} \mathrm{O}(0.6 \mathrm{~L} \times 4), \mathrm{EtOAc}(0.6 \mathrm{~L} \times 5)$, and $\mathrm{n}-\mathrm{BuOH}$ saturated with water ($0.6 \mathrm{~L} \times 5$), successively. Fractionations were achieved by monitoring normal- and/or reversed-phase HPLC. A part $(4.5 \mathrm{~g})$ of the EtOAc extract (7.5 g) was chromatographed over Toyopearl HW-40 (2.2 i.d. $\times 59 \mathrm{~cm}$) with aqueous $\mathrm{MeOH}(20 \% \rightarrow 30 \% \rightarrow 40 \% \rightarrow 50 \% \rightarrow 60 \% \rightarrow 70 \% \mathrm{MeOH}) \rightarrow$ $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$-acetone (3:2:1 $\rightarrow 3: 1: 2$) $\rightarrow 70 \%$ aqueous acetone The $40 \%, 50 \%, 60 \%$, and $70 \% \mathrm{MeOH}$ eluates yielded (+)catechin (204 mg), pedunculagin (18) (66 mg), kaempferol 3-O($6^{\prime \prime}$-O-gal loyl)- β-D-glucopyranose (61 mg), and valoneic acid dilactone (77 mg), respectively. The eluate of $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}-$ acetone (3:2:1) was further chromatographed over MCI GEL CHP-20P and/or YMC-GEL ODS AQ 120-50S (each 1.1 i.d. \times 25 cm) with aqueous MeOH to give cocciferin $\mathrm{D}_{1}(\mathbf{1})(87 \mathrm{mg})$, casuarictin (16) (4 mg), tellimagrandin II (13) (5 mg), and phillyraeoidins A (6) (336 mg) and $\mathrm{E}(6 \mathrm{mg})$. The $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}-$ acetone(3:1:2) eluate was purified by Mega Bond Elut C_{18} with aqueous MeOH to give ellagic acid (15 mg). The rest $(3.0 \mathrm{~g})$ of the EtOAc extract was similarly fractionated and purified by a combination of col umn chromatography over ToyopearI HW40, MCI GEL CHP-20P, and/or YMC-GEL ODS AQ 120-50S to furnish additional crops of $\mathbf{1}(104 \mathrm{mg}), \mathbf{6}(306 \mathrm{mg}), 18$ (56 mg), (+)-catechin (123 mg), valoneic acid dilactone (25 mg), and kaempferol 3-O-(6"-O-galloyl)- β-D-glucopyranose (42 mg). A part (8.0 g) of the n - BuOH extract (17.1 g) was chromatographed over Diaion HP-20 (6.5 i.d. $\times 45 \mathrm{~cm}$) with $\mathrm{H}_{2} \mathrm{O} \rightarrow$ aqueous $\mathrm{MeOH}(10 \% \rightarrow 20 \% \rightarrow 30 \% \rightarrow 40 \% \rightarrow 60 \% \mathrm{MeOH}) \rightarrow$ $\mathrm{MeOH} \rightarrow 70 \%$ aqueous acetone. The 20% and $30 \% \mathrm{MeOH}$ eluates were separately chromatographed over Toyopearl HW40 (2.2 i.d. $\times 40 \mathrm{~cm}$) with aqueous $\mathrm{MeOH}(20 \% \rightarrow 30 \% \rightarrow 40 \%$ $\rightarrow 50 \% \rightarrow 60 \% \rightarrow 70 \% \mathrm{MeOH}$) $\rightarrow \mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}-$ acetone ($3: 2: 1$ \rightarrow 3:1:2 \rightarrow 1:1:1) $\rightarrow 70 \%$ aqueous acetone, to afford acutissimin B (45 mg in total) from 20% and $30 \% \mathrm{MeOH}$ eluates. The $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$-acetone (3:1:2) eluate from the separation by column chromatography over Toyopearl HW-40 of 40\% and $60 \% \mathrm{MeOH}$ eluates were combined and further purified on MCI GEL CHP-20P and/or YMC-GEL ODS AQ 120-50S with aqueous MeOH to furnish 6 (50 mg), phillyraeoidins B (7) (12 mg) and C (8) (15 mg), and cocciferin $\mathrm{T}_{1}(4)(11 \mathrm{mg})$. A part $(16.0 \mathrm{~g})$ of the aqueous extract (34.7 g) was chromatographed
over Diaion HP-20 (6.5 i.d. $\times 40 \mathrm{~cm}$) with $\mathrm{H}_{2} \mathrm{O}$ containing increasing amounts of MeOH in a stepwise gradient mode. The eluates of $10 \%, 20 \%$, and $30 \% \mathrm{MeOH}$ were separately subjected to column chromatography over Toyopearl HW-40 (2.2 i.d. \times 40 cm), yielding 7 (107 mg), castalagin (17) (179 mg in total), and vescalagin (132 mg). The $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$-acetone (1:1:1) fraction from the $30 \% \mathrm{MeOH}$ eluate was further purified by MCI GEL CHP-20P (1.1 i.d. $\times 20 \mathrm{~cm}$) column chromatography and/or Mega Bond Elut C_{18} cartridge col umn chromatography to give cocciferin D_{2} (2) (26 mg).

The dried leaves (800 g) of Q. suber were homogenized in 70% aqueous acetone ($2 \mathrm{~L} \times 5$), and the concentrated sol ution $(650 \mathrm{~mL})$ was extracted with $\mathrm{Et}_{2} \mathrm{O}(0.6 \mathrm{~L} \times 5)$, $\mathrm{EtOAc}(0.6 \mathrm{~L} \times$ 8), and $\mathrm{n}-\mathrm{BuOH}$ saturated with water ($0.6 \mathrm{~L} \times 8$), successively. A part (5.0 g) of the EtOAc extract (9.7 g) was chromatographed over Toyopearl HW-40 (2.2 i.d. $\times 60 \mathrm{~cm}$) with aqueous $\mathrm{MeOH}(40 \% \rightarrow 50 \% \rightarrow 60 \% \rightarrow 70 \% \mathrm{MeOH}) \rightarrow \mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}-$ acetone ($3: 1: 1 \rightarrow 1: 1: 1$) $\rightarrow 70 \%$ aqueous acetone. The 50% and $60 \% \mathrm{MeOH}$ eluates afforded 18 (210 mg) and tellimagrandin I (23) (67 mg), respectively. The eluates of 40% and $70 \% \mathrm{MeOH}$ were separately subjected to column chromatographies over MCI GEL CHP-20P and/or YMC-GEL ODS AQ 120-50S with aqueous MeOH to give quercetin (10 mg), quercitrin (11 mg), and kaempferol 3-O-(6"-O-galloyl)- β-D-glucopyranose (14 mg) from the former and mongolicain A (35 mg) from the latter. The aqueous extract (50.0 g) was fractionated by column chromatography over Diaion HP-20 (7.0 i.d. $\times 70 \mathrm{~cm}$) and developed with $\mathrm{H}_{2} \mathrm{O}$ and increasing amounts of $\mathrm{MeOH}\left[\mathrm{H}_{2} \mathrm{O}\right.$ $\rightarrow 20 \% \mathrm{MeOH} \rightarrow 40 \% \mathrm{MeOH} \rightarrow 60 \% \mathrm{MeOH} \rightarrow \mathrm{MeOH}]$ and 70% aqueous acetone in a stepwise gradient mode. The 20\% MeOH eluate was further chromatographed over Toyopearl HW-40 (2.2 i.d. $\times 60 \mathrm{~cm}$) with aqueous $\mathrm{MeOH}(20 \% \rightarrow 30 \% \rightarrow$ $50 \% \rightarrow 60 \% \rightarrow 70 \% \mathrm{MeOH}) \rightarrow \mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}-$ acetone $(7: 2: 1) \rightarrow$ 70% aqueous acetone and finally purified on YMC-GEL ODS AQ 120-50S (1.1 i.d. $\times 45 \mathrm{~cm}$) with aqueous MeOH to yield 17 (13 mg), acutissimin B (5 mg), vescalagin (42 mg), castavaloninic acid (24) (11 mg), isocastavaloninic acid (4 mg), desgalloylstachyurin (3 mg), and cocciferin $\mathrm{T}_{2}(5)(6 \mathrm{mg})$. The eluate of $40 \% \mathrm{MeOH}$ from the Diaion HP-20 column was similarly fractionated and purified on Toyopearl HW-40 (2.2 i.d. $\times 60 \mathrm{~cm}$) and YMC-GEL ODS AQ 120-50S (1.1 i.d. $\times 40$ cm) with aqueous MeOH to give $\mathbf{2}(57 \mathrm{mg}), \mathbf{3}(10 \mathrm{mg}), 5$ (67 $\mathrm{mg})$, $\mathbf{1 7}(5 \mathrm{mg})$, and $\mathbf{2 4}(2 \mathrm{mg})$.
Cocciferin $\mathbf{D}_{1}\left(\mathbf{1)}\right.$: light brown amorphous powder; $[\alpha]^{23} \mathrm{D}$ $+93.8^{\circ}$ (c 1.0, MeOH); UV (MeOH) $\lambda_{\text {max }}(\log \epsilon) 217(4.28), 278$ (3.89) nm; CD (MeOH) $[\theta](\mathrm{nm})+1.2 \times 10^{5}(226),-2.6 \times 10^{4}$ (256), $+6.3 \times 10^{4}(282) ;{ }^{1} \mathrm{H}$ NMR (acetone-d $\left.{ }_{6}+\mathrm{D}_{2} \mathrm{O}\right) \delta 7.00-$ 7.35 (12 H in total, each s, galloyl-H), 6.944, 6.940, 6.53, 6.52, 6.21, 6.17 (3H in total, each s, valoneoyl-H), sugar protons, seeTable 1; ${ }^{13} \mathrm{C}$ NMR (acetone-d $\left.{ }_{6}+\mathrm{D}_{2} \mathrm{O}\right) \delta$ 167.9, 167.8, 167.1, 167.0, 166.6 (2C), 166.1 (2C), 165.2, 165.1, 164.9, 164.8 (ester carbonyl carbons), 146.0, 145.90, 145.87, 145.8, 145.7, 145.6 (each 2C, galloyl C-3, 5), 146.7, 146.6 (1C in total, valoneoyl C-4'), 145.3, 145.2, 145.0 (3C in total, valoneoyl C-5, 5^{\prime}), 144.6, 144.5 (1C in total, valoneoyl C-5"), 143.5 (valoneoyl C-3"), 140.6, 140.4, 139.8, 139.4, 139.3, 139.2, 139.1, (galloyl C-4), 139.8 (valoneoyl C-4"), 139.4 (valoneoyl C-2"), 136.6, 136.4 (valoneoyl C-5, 5'), 126.1, 125.1 (valoneoyl C-2, 2'), 121.3, 120.2, 120.1, 120.0, 119.7, 119.3, 119.2 (galloyl C-1), 117.1 (valoneoyl C-1'), 115.5 (valoneoyl C-1), 113.5 (valoneoyl C-1"), 110.3 (2C), 110.3 (4C), 110.2 (4C), 110.1 (4C), 110.0 (2C) (galloyl C-2, 6), 110.0 (val oneoyl C-6"), 107.5 (valoneoyl C-3), 104.2 (valoneoyl C-3'), sugar carbons, see Table 1; ESIMS m/z $1742\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$; anal. C 47.83%, H 3.85%, calcd for $\mathrm{C}_{75} \mathrm{H}_{56} \mathrm{O}_{48} \cdot 9 \mathrm{H}_{2} \mathrm{O}$, C 47.72%, H 3.92\%.

Methylation of 1 Followed by Methanolysis. To a solution of $\mathbf{1}(2 \mathrm{mg})$ in dry acetone (1 mL) were added $\mathrm{Me}_{2} \mathrm{SO}_{4}$ ($10 \mu \mathrm{~L}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(10 \mathrm{mg}$), and the mixture was stirred overnight at room temperature and then refluxed for 2 h . After centrifugation, the supernatant was evaporated and the reaction mixture was directly methanolyzed in $2 \% \mathrm{NaOMe}$ in $\mathrm{MeOH}(1 \mathrm{~mL})$ at room temperature for 8 h . After acidification with acetic acid and removal of the solvent, the residue was further treated with $\mathrm{CH}_{2} \mathrm{~N}_{2}$ in $\mathrm{Et}_{2} \mathrm{O}(1 \mathrm{~mL})$ for 2 h and the solvent was evaporated. The residue was redissol ved in MeOH
and analyzed by reversed-phase HPLC (solvent D), which showed the production of methyl tri-O-methylgallate (9) and trimethyl octa-O-methylvaloneate (10).

Partial Hydrolysis of 1. An aqueous sol ution (1 mL) of $\mathbf{1}$ $(1 \mathrm{mg})$ was heated in a boiling water bath for 1 h . The reaction mixture was analyzed by normal- and reversed-phase HPLC (solvent B) to show the peaks due to 2,3,6-tri-O-galloyl-dglucose (14) and rugosin A (15).

Cocciferin \mathbf{D}_{2} (2): light brown amorphous powder; $[\alpha]^{23}{ }_{D}$ -64.4° (c 1.0, MeOH); UV (MeOH) $\lambda_{\text {max }}(\log \epsilon) 219(4.38), 283$ (3.87) nm; CD (MeOH) $[\theta](\mathrm{nm})+1.7 \times 10^{5}(235),-7.1 \times 10^{4}$ (263), $+1.1 \times 10^{4}(287)$; ${ }^{1} \mathrm{H}$ NMR (acetone-d $\left.{ }_{6}+\mathrm{D}_{2} \mathrm{O}\right) \delta 7.28$ $\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\mathrm{A}}-6\right), 6.87\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{1}-3\right), 6.67\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\mathrm{E}}-3\right), 6.60(1 \mathrm{H}$, $\mathrm{s}, \mathrm{H}_{\mathrm{J}}-3$), $6.55\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\mathrm{D}}-3\right.$), $6.45,6.44$ (each $1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\mathrm{B}}-3, \mathrm{H}_{\mathrm{H}^{-}}$ 3), $6.42\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\mathrm{c}}-3\right)$, sugar protons, see Table 1; ${ }^{13} \mathrm{C}$ NMR (acetone- $\left.\mathrm{d}_{6}+\mathrm{D}_{2} \mathrm{O}\right) \delta$ 169.0, 166.1, $163.5\left(\mathrm{C}_{\mathrm{A}, \mathrm{H},}-7\right), 167.1,165.7$, $164.5\left(\mathrm{C}_{\mathrm{F}, \mathrm{G}, \mathrm{I}}-7\right), 169.4,169.1,168.1,168.0\left(\mathrm{C}_{\mathrm{B}-\mathrm{E}}-7\right), 146.8\left(\mathrm{C}_{\mathrm{H}^{-}}\right.$ 4), 145.1 (2C) ($\mathrm{C}_{\mathrm{J}}-4,6$), $144.9\left(\mathrm{C}_{\mathrm{H}}-6\right), 143.4\left(\mathrm{C}_{\mathrm{A}}-5\right), 141.4$ ($\mathrm{C}_{\mathrm{A}^{-}}$ 3), 140.4 ($\mathrm{C}_{\mathrm{A}}-4$), 145.3, 144.3 ($\mathrm{C}_{\mathrm{F}}-3,5$), 146.2, 145.9, 145.0 (2C), $144.9,144.5$ (2C), 144.3 (2С), 144.0, 143.1 ($C_{b-E}-4,6, C_{G, I}-3$, 5), 137.0, 136.3 (3С) (СВ-Е-5), 136.4 ($\left.\mathrm{C}_{\mathrm{H}}-5\right), 136.0$ ($\mathrm{C}_{\jmath}-5$), 137.8, 137.6, 134.9 (($\mathrm{F}, \mathrm{G}, \mathrm{I}-4$), 127.7, 126.6, 126.0, 125.9 (2C), 125.6, $125.5,125.1,125.0,122.0\left(\mathrm{C}_{\mathrm{B}-\mathrm{E}-2,} \mathrm{C}_{\mathrm{A}, \mathrm{H}, \mathrm{J}}-2, \mathrm{C}_{\mathrm{F}, \mathrm{G},-1}\right.$), 117.1 (C_{H} 1), $114.7\left(C_{J}-1\right), 113.3\left(C_{A}-1\right)$, $118.0\left(C_{F}-6\right), 115.9,115.7$ (2C), 113.0 ($\mathrm{C}_{\mathrm{F}, \mathrm{G}, 1}-2, \mathrm{C}_{\mathrm{G}}-6$), 115.4, 114.7, 114.5, 114.3 ($\mathrm{C}_{\mathrm{B}-\mathrm{E}}-1$), 109.7 ($C_{A}-6$), $107.6\left(C_{J}-3\right), 107.5\left(C_{H}-3^{\prime}\right), 108.8\left(C_{-}-6\right), 108.2,107.4$, 107.2, 105.8 ($\mathrm{C}_{\text {B-E }}-3$), sugar carbons, see Table 1; ${ }^{1} \mathrm{H}$ NMR (methanol- $\left.\mathrm{d}_{4}, 45{ }^{\circ} \mathrm{C}\right) \delta 7.28\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\mathrm{A}}-6\right), 6.87\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{1}-3\right)$, $6.67\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\mathrm{E}}-3\right), 6.60\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\mathrm{J}}-3\right), 6.55\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\mathrm{D}}-3\right), 6.450$ $\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\mathrm{B}}-3\right), 6.447\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\mathrm{H}}-3\right), 6.42\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\mathrm{c}}-3\right), 6.12$ [1H, d, J $=8.5 \mathrm{~Hz}$, glucose (glc) H-1], 5.58 ($1 \mathrm{H}, \mathrm{m}, \mathrm{glc} \mathrm{H}-5^{\prime}$), 5.42 ($1 \mathrm{H}, \mathrm{t}, \mathrm{J}=10 \mathrm{~Hz}$, glc H-3), 5.38 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=5 \mathrm{~Hz}$, glc H-1'), $5.35(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7,13 \mathrm{~Hz}, \mathrm{glcH}-6), 5.26(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=10 \mathrm{~Hz}, \mathrm{glc}$ $\mathrm{H}-4), 5.20(1 \mathrm{H}, \mathrm{br} \mathrm{t}, \mathrm{J}=9 \mathrm{~Hz}, \mathrm{glcH}-2), 5.16(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=3,13$ Hz , glc H-6'), 5.09 ($1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}$, glc H-4'), 4.93 (1 H , br d, $\mathrm{J}=6 \mathrm{~Hz}$, glc H-3'), $4.80\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=1.5,5 \mathrm{~Hz}, \mathrm{glcH}-2^{\prime}\right), 4.33$ ($1 \mathrm{H}, \mathrm{m}, \mathrm{glcH}-5$), $3.99(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13 \mathrm{~Hz}$, glcH-6'), 3.95 ($1 \mathrm{H}, \mathrm{d}$, $\mathrm{J}=13 \mathrm{~Hz}$, glc H-6); ${ }^{13} \mathrm{C}$ NMR (methanol- $\mathrm{d}_{4}, 45{ }^{\circ} \mathrm{C}$) $\delta 171.5$ ($\mathrm{C}_{\mathrm{C}}-7$), $171.0\left(\mathrm{C}_{\mathrm{B}}-7\right), 170.9\left(\mathrm{C}_{\mathrm{J}}-7\right), 170.2\left(\mathrm{C}_{\mathrm{E}}-7\right), 169.7\left(\mathrm{C}_{\mathrm{D}}-7\right)$, $169.0\left(C_{1}-7\right), 167.8\left(C_{H}-7\right), 167.3\left(C_{G}-7\right), 166.9\left(C_{F}-7\right), 165.7\left(C_{A^{-}}\right.$ 7), 148.3 (С ${ }_{H}-4$), 147.9, 147.0, 146.8, 146.74, 146.66 (2C), 146.6, $146.4,146.2,145.9$ (2C), 145.8, 145.7, 145.62, 145.57, 145.53, $145.47,145.1,145.0,143.1,141.7,140.1,139.0,138.9,138.5$, 138.4, 138.3, 137.9, 136.9, 129.1, 127.4, 127.2, 127.1, 126.8, 126.7, 126.2, 126.1, 123.0, 119.9, 118.4, 117.4, 117.3, 116.9, $116.3,116.15,116.09,116.0,114.9,114.7,111.2,110.6,110.0$, $109.23,109.17,108.9,108.7,107.3,93.8,78.7,77.0,75.4,74.9$, 73.1, 70.6, 70.3, 68.4, 67.6, 66.7, 64.5; ESIMS m/z 1886 [M + $\left.\mathrm{NH}_{4}\right]^{+}$; anal. C $46.22 \%, \mathrm{H} 3.85 \%$, calcd for $\mathrm{C}_{82} \mathrm{H}_{52} \mathrm{O}_{52} \cdot 15 \mathrm{H}_{2} \mathrm{O}$, C $46.02 \%, \mathrm{H}, 3.85 \%$.

Methylation of 2 and 3 Followed by Methanolysis. Methylation of $\mathbf{2}$ and $\mathbf{3}$ (each $\mathbf{1 m g}$) was performed in a way similar to that described for 1. Each reaction mixture was directly methanolyzed in $2 \% \mathrm{NaOM}$ e in $\mathrm{MeOH}(1 \mathrm{~mL})$ at room temperature for 8 h . After the usual workup, the reaction mixtures obtained from the individual tannins were analyzed by reversed-phase HPLC (solvent D) to detect common peaks identical with those of authentic compound $\mathbf{1 0}$ and dimethyl hexamethoxydi phenate (11).

Partial Hydrolysis of 2 and 3. Each aqueous solution (1 mL) of $\mathbf{2}$ and $\mathbf{3}$ (each 1 mg) was heated in a boiling water bath for 1 h . The reaction mixtures of $\mathbf{2}$ and $\mathbf{3}$ showed peaks identical with those of pedunculagin (18) and 4,6-(S)-HHDP-D-glucose (26), respectively, on reversed-phase HPLC (solvent B).

Cocciferin $\mathbf{D}_{3}(3)$: light brown amorphous powder; $[\alpha]^{23}{ }_{D}$ -87.2° (c 1.0, MeOH); UV (MeOH) $\lambda_{\text {max }}(\log \epsilon) 216(4.20), 276$ (3.66) nm; CD (MeOH) $[\theta](\mathrm{nm})+1.7 \times 10^{5}(231),-4.2 \times 10^{4}$ (261), $+1.0 \times 10^{3}(286) ;{ }^{1} \mathrm{H}$ NMR (acetone-d $\left.{ }_{6}+\mathrm{D}_{2} \mathrm{O}\right) \delta 7.30$ $\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\mathrm{A}}-6\right), 6.79\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\mathrm{G}}-3\right), 6.68\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\mathrm{B}}-3\right), 6.61(1 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{H}_{\mathrm{H}}-3\right), 6.49\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\mathrm{F}}-3\right)$, sugar protons, see Table $1 ;{ }^{13} \mathrm{C}$ NMR (acetone- $\left.\mathrm{d}_{6}+\mathrm{D}_{2} \mathrm{O}\right) \delta 169.1\left(\mathrm{C}_{\mathrm{H}}-7\right), 168.4\left(\mathrm{C}_{\mathrm{C}}-7\right), 168.3$ ($\mathrm{C}_{\mathrm{B}}-7$), $167.1\left(\mathrm{C}_{\mathrm{G}}-7\right), 166.2\left(\mathrm{C}_{\mathrm{F}}-7\right)$, 165.6 ($\mathrm{C}_{\mathrm{E}}-7$), $164.2\left(\mathrm{C}_{\mathrm{A}}-7\right.$), 163.9 ($C_{D}-7$), 147.3 ($C_{F}-4$), 145.1, $145.0\left(C_{H}-4,6\right), 144.9\left(C_{F}-6\right)$, $143.5\left(C_{A}-5\right), 140.8\left(C_{A}-3\right), 140.6\left(C_{A}-4\right), 145.3$ (2C) ($\left.C_{D}-3,5\right)$,
146.4, 144.7, 144.6, 144.4, 144.3, 144.2, 144.0, 143.1 (С в, с-4, $\left.6, C_{E, G}-3,5\right), 136.4\left(C_{F}-5\right), 136.1\left(C_{H}-5\right), 137.7,137.3,134.8$ ($\left.C_{D, E, G}-4\right), 136.8,136.2$ ($\left.C_{B, C}-5\right), 129.6,128.0,126.7,126.4,126.3$, $125.5,125.4,122.5$ ($C_{A, F, H}-2, C_{D, E, G}-1, C_{B, C}-2$), 118.1 (CD-6), 117.0 $\left(\mathrm{C}_{\mathrm{H}}-1\right)$, $114.5\left(\mathrm{C}_{\mathrm{F}}-1\right)$, $112.9\left(\mathrm{C}_{A}-1\right), 116.0,115.8,115.5,115.1$ ($\left.C_{D, E, F}-2, C_{E}-6\right), 114.5,114.4\left(C_{B, C}-1\right), 110.0\left(C_{A}-6\right), 109.1\left(C_{G}-\right.$ 6), $107.8\left(\mathrm{C}_{\mathrm{H}}-3\right)$, 106.3 ($\mathrm{C}_{\mathrm{F}}-3$), 108.2 (2C) ($\mathrm{C}_{\mathrm{B}, \mathrm{C}}-3$), sugar carbons, see Table 1; ESIMS m/z 1584 [M + NH $\left.4_{4}\right]^{+}$; anal. C $47.92 \%, \mathrm{H}$ 3.97%, calcd for $\mathrm{C}_{68} \mathrm{H}_{46} \mathrm{O}_{44} \cdot 10 \mathrm{H}_{2} \mathrm{O}, \mathrm{C} 46.74 \%$, H 3.79%.

Cocciferin $\mathbf{T}_{\mathbf{1}}$ (4): light brown amorphous powder; $[\alpha]^{23_{D}}$ $+45.8^{\circ}$ (c 1.0, MeOH); UV (MeOH) $\lambda_{\text {max }}(\log \epsilon) 220(4.10), 278$ (4.75) nm; CD (MeOH) $[\theta](\mathrm{nm})+1.7 \times 10^{5}(225),+8.0 \times 10^{4}$ (239), $-3.1 \times 10^{4}(260),+3.1 \times 10^{4}(282)$; ${ }^{1} \mathrm{H}$ NMR (acetone $\mathrm{d}_{6}+\mathrm{D}_{2} \mathrm{O}$) $\delta 7.19,7.06,7.05,7.01,7.00,6.90$ (each 2 H , s, galloyl H), 7.11, 7.10, 6.961, 6.958, 6.60, 6.59, 6.53, 6.487, 6.485, 6.47, $6.362,6.357,6.20,6.19,6.16,6.15$ (each $1 \mathrm{H}, \mathrm{s}, \mathrm{HHDP}$, valoneoyl H), sugar protons, see Table 1; ${ }^{13} \mathrm{C}$ NMR (acetone$\left.\mathrm{d}_{6}+\mathrm{D}_{2} \mathrm{O}\right) \delta 169.4,169.0,168.1,168.0(2 \mathrm{C}), 167.9,167.8,166.8$, 166.5, 166.1, 166.0, 165.2, 164.8, 162.3 (ester carbonyl carbons), 146.8, 146.5 (valoneoyl C-4'), 146.1, 146.0, 145.9, 145.8, 145.7, 145.7, 145.6 (each 2C, HHDP C-3, 5), 145.3 (2C), 145.2, 145.1, 145.0, 144.9, 144.6 (2C), 144.3, 144.2, 143.5, 143.2 (HHDP C-4, $6,6^{\prime}$, valoneoyl C-4, $\left.4^{\prime \prime}, 6,6^{\prime}, 5^{\prime \prime}\right), 141.2,140.6,140.5,140.3$, (valoneoyl C-3", 4"), 140.0, 139.5, 139.4 (2C), 139.2, 139.1 (galloyl C-4), 137.8, 136.5 (2C), 136.3 (2C), 136.2 (valoneoyl C-5, 5', 2"), 136.9, 136.1 (HHDP C-5, 5'), 126.6, 126.4, 126.2, 125.8, 125.5, 125.3 (HHDP C-2, 2', valoneoyl C-2, 2'), 121.0, 120.0, 119.9, 119.8, 119.5, 119.4 (galloyl C-1), 117.6, 117.1, 115.8, 115.2, 114.8, 114.2, 113.8, 112.9 (HHDP C-1, 1^{\prime}, valoneoyl C-1, $\left.1^{\prime}, 1^{\prime \prime}\right), 110.4$ (2C), 110.2 (4C), 110.1 (2C), 110.0 (4C) (galloyl C-2, 6), 110.2, 110.1 109.9, 107.7, 107.5, 107.3, 105.0 (HHDP C-3, 3', valoneoyl C-3, 3', 6"), sugar carbons, see Table 1; ESIMS m/z $2676\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$; anal. C $46.60 \%, \mathrm{H} 4.12 \%$, calcd for $\mathrm{C}_{116} \mathrm{H}_{82} \mathrm{O}_{74} \cdot 20 \mathrm{H}_{2} \mathrm{O}, \mathrm{C} 46.47 \%$, H 4.04\%.

Methylation of 4 and 5 Followed by Methanolysis. A mixture of 4 (or 5) (each 1 mg), $\mathrm{Me}_{2} \mathrm{SO}_{4}(10 \mu \mathrm{~L})$, and $\mathrm{K}_{2} \mathrm{CO}_{3}$ $(10 \mathrm{mg})$ in dry acetone (1 mL) was stirred overnight at room temperature and then heated under reflux for 2 h . After removal of inorganic material by centrifugation, the reaction mixture was directly methanolyzed in $2 \% \mathrm{NaOM}$ in MeOH (1 mL) at room temperature for 8 h . The reaction mixture was evaporated in vacuo. Reversed-phaseHPLC (solvent D) of each residue showed peaks identical with those of the authentic compounds 9, 10, and 11.
Partial Hydrolysis of 4. A solution of $\mathbf{4}(1 \mathrm{mg})$ in $\mathrm{H}_{2} \mathrm{O}(1$ mL) was heated in a boiling water bath for 1 h . Normal- and reversed-phase HPLC (solvent B) showed peaks due to phillyraeoidin B (7), praecoxins A (20) and D (21), and 2,3-(S)-HHDP-D-glucose (22).

Cocciferin $\mathbf{T}_{\mathbf{2}}$ (5): light brown amorphous powder; $[\alpha]^{23} \mathrm{D}$ $+9.8^{\circ}$ (c 1.0, MeOH); UV (MeOH) $\lambda_{\max }(\log \epsilon) 220(4.01), 264$ (3.81) nm; CD (MeOH) $[\theta](\mathrm{nm})+1.0 \times 10^{5}(220),+1.6 \times 10^{5}$ $(232),+1.7 \times 10^{5}(237),-7.6 \times 10^{4}(263),+2.3 \times 10^{4}(285) ;{ }^{1} \mathrm{H}$ NMR (acetone-d $\left.{ }_{6}+\mathrm{D}_{2} \mathrm{O}\right) \delta 7.05\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\mathrm{N}}-3\right), 6.98\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\mathrm{B}}-\right.$ 2, 6), 6.98 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\mathrm{A}}-6$), 6.77 ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\mathrm{M}}-3$), $6.65\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\mathrm{D}}-3\right.$), $6.63\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\mathrm{G}}-3\right), 6.61\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\mathrm{E}}-6\right), 6.49\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\mathrm{H}}-3\right), 6.45$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\mathrm{c}}-3$), $6.43\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\mathrm{L}}-3\right), 6.36$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{H}_{\mathrm{l}}-3$), 6.16 ($1 \mathrm{H}, \mathrm{s}$, $\mathrm{H}_{\mathrm{F}}-3$), sugar protons, seeTable $1 ;{ }^{13} \mathrm{C}$ NMR (acetone-d ${ }_{6}+\mathrm{D}_{2} \mathrm{O}$) $\delta 169.4\left(\mathrm{C}_{\mathrm{A}}-7\right), 169.2\left(\mathrm{C}_{\mathrm{F}}-7\right), 169.0\left(\mathrm{C}_{\mathrm{N}}-7\right), 168.7\left(\mathrm{C}_{1}-7\right), 168.2$ ($\mathrm{C}_{\mathrm{D}}-7$), 168.0 ($\mathrm{C}_{\mathrm{C}}-7$), 167.8 ($\mathrm{C}_{\mathrm{H}}-7$), 167.1 ($\mathrm{C}_{\mathrm{B}}-7$), 167.0 ($\mathrm{C}_{\mathrm{M}}-7$), $166.1\left(C_{L}-7\right), 165.6\left(C_{K}-7\right), 164.9\left(C_{G}-7\right), 164.6\left(C_{J}-7\right), 163.0\left(C_{E}-\right.$
 $\left.4,5, C_{A, E}-4,6, C_{F, L}-6\right), 144.0,143.2$, ($\left.C_{F, L}-5\right), 144.3$ (2C) ($C_{B}-3$, 5), 141.3, 140.6, 140.4, 140.2 ($\mathrm{C}_{\mathrm{F}, \mathrm{L}}-3,4$), 139.3 (Св-4), 137.9, 137.7, 134.9 ($\mathrm{C}_{\mathrm{J}, \mathrm{K}, \mathrm{M}-4), 1} 137.1-136.2$ ((СС,D,F,G,H,I,,M-5), 127.8, 126.2 (2C), 126.1, 125.8, 125.7, 125.6 (2С), 125.5, 125.2, 124.9, 122.1 ($\left.C_{C, D, F, G, H, I L, N}-2, C_{J, K, M}-1\right), 120.2\left(C_{B}-1\right), 118.0\left(C_{J}-6\right), 115.9$, 115.7 (2С), 113.0 ($\left.\mathrm{C}_{\mathrm{J}, \mathrm{M}}-2, \mathrm{C}_{\mathrm{K}}-6\right), 117.1,116.5,115.8,115.0$, $114.1,113.0\left(C_{A, E, F, G, L, N}-1\right), 115.5,114.6,114.5,114.4$ (CC,D,H,I1), 110.2 (2С) (Св $-2,6$), 108.2, 107.9, 107.5, 106.9 (СС, С, , н,,-), 110.3, 109.9, 108.1, 107.7, 105.9, 103.9 ($\mathrm{C}_{\mathrm{H}, 1-6, \mathrm{C}_{\mathrm{F}, \mathrm{G}, \mathrm{L}, \mathrm{N}}-3 \text {) (for }}$ major peaks), sugar carbons, see Table 1; ESIMS m/z 2670 $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$; anal. C $47.96 \%, \mathrm{H} 3.69 \%$, calcd for $\mathrm{C}_{116} \mathrm{H}_{76} \mathrm{O}_{74}{ }^{\circ}$ $15 \mathrm{H}_{2} \mathrm{O}, \mathrm{C} 47.64 \%$, H 3.63\%.

Partial Hydrolysis of 5. An aqueous solution (1 mL) of 5 (1 mg) was heated in a boiling water bath for 2 h . The reaction mixture was analyzed by reversed-phase HPLC (solvent C) to exhi bit the peaks due to castavaloninic acid (24), cornusiin B (25), 4,6-(S)-HHDP-D-glucose (26), gemin D (27), and camelliatannin H (28).

Acknowledgment. The authors are grateful to the SCNMR Laboratory of Okayama University for the NMR experiments. Thanks are due to Mr. Sari Djamel from El Kala National Park, Algeria, for providing the plants of Q. coccifera and Q. suber.

Supporting Information Available: Structures of known compounds and ${ }^{13} \mathrm{C}$ NMR spectral data for the sugar moieties of compounds $\mathbf{6}, \mathbf{1 2}, \mathbf{1 3}, \mathbf{1 6} \mathbf{- 1 9}$, and $\mathbf{2 3}$. This material is available free of charge via the Internet at http://pubs.acs.org.

References and Notes

(1) Ahmad, A.; Hani, M.; Suleiman, A.-K. Alexandria J . Pharm. Sci. 1996, 10, 123-126
(2) Monako, P.; Previtera, L. J. Nat. Prod. 1984, 47, 673-676.
(3) Patra, A.; CChaudhuri, S.; Panda, S. K. J . Nat. Prod. 1988, 51, 217220.
(4) Pereira, H. Wood Sci. Technol. 1988, 22, 211-218.
(5) Conde, E.; Cadahia, E.; Garcia-Vallejo, M. C.; deSimon, B. F.; Arados, J. R. G. J. Agric. Food Chem. 1997, 45, 2695-2700.
(6) Okuda, T.; Yoshida, T.; Ashida, M.; Yazaki, K. J. Chem. Soc., Perkin Trans. 1 1983, 1765-1772.
(7) Wilkins, C. K.; Bohm, B. A. Phytochemistry 1976, 15, 211-214.
(8) Collins, F. W.; Bohm, B. A.; Wilkins, C. K. Phytochemistry 1975, 14, 1099-1102.
(9) Nonaka, G.; Nakayama, S.; Nishioka, I. Chem. Pharm. Bull. 1989, 37, 7, 2030-2036.
(10) Nonaka, G.; Sakai, T.; Tanaka, T.; Mihashi, K.; Nishioka, I. Chem. Pharm. Bull. 1990, 38, 2151-2156.
(11) Ishimaru, K.; Nonaka, G.; Nishioka, I. Chem. Pharm. Bull. 1987, 35, 602-610.
(12) Mayer, W.; Seiz, H.; J ochims, J. C. Liebigs Ann. Chem. 1969, 721, 186-193.
(13) Yoshida, T.; Hatano, T.; Ito, H.; Okuda, T. In Studies in Natural Products Chemistry; Atta-ur-Rahman, Ed.; Elsevier Science B.V.: Amsterdam, 2000, Vol. 23, pp 395-453.
(14) Mayer, W.; Seitz, H.; J ochims, J. C.; Schauerte, K.; Schilling, G. Liebigs Ann. Chem. 1971, 751, 60-68.
(15) Mayer, W.; Bilzer, W.; Schilling, G. Liebigs Ann. Chem. 1976, 876881.
(16) Nonaka, G.; Sakai, T.; Nakayama, S.; Nishioka, I. J . Nat. Prod. 1990, 53, 1297-1301.
(17) Nonaka, G.; Ishimaru, K.; Mihashi, K.; I wase, Y.; Ageta, M.; Nishioka, I. Chem. Pharm. Bull. 1988, 36, 847-869.
(18) Lee, S. H.; Tanaka, T.; Nonaka, G.; Nishioka, I. Phytochemistry 1990, 29, 3621-3625.
(19) Y oshida, T.; Hatano, T.; Kuwajima, T.; Okuda, T. Heterocycles 1992, 33, 463-482.
(20) Tanaka, T.; Nonaka, G.; Nishioka, I. Phytochemistry 1983, 22, 25752578.
(21) Hatano, T.; Ogawa, N.; Yasuhara, T.; Okuda, T. Chem. Pharm. Bull. 1990, 38, 3308-3313.
(22) Okuda, T.; Y oshida, T.; Hatano, T.; Koga, T.; Toh, N.; Kuriyama, K. Tetrahedron Lett. 1982, 23, 3937-3940.
(23) Okuda, T.; Yoshida, T.; Hatano, T. J. Nat. Prod. 1989, 52, 1-31.
(24) Hatano, T.; Yazaki, K.; Okonogi, A.; Okuda, T. Chem. Pharm. Bull. 1991, 39, 1689-1693.
(25) Seikel, M. K.; Hills, W. E. Phytochemistry 1970, 9, 1115-1128.
(26) Okuda, T.; Hatano, T.; Ogawa, N.; Kira, R.; Matsuda, M. Chem. Pharm. Bull. 1984, 32, 4662-4665.
(27) Yoshida, T.; Maruyama, Y.; Memon, M. U.; Shingu, T.; Okuda, T. Phytochemistry 1985, 24, 1041-1046.
(28) Han, L.; Hatano, T.; Y oshida, T.; Okuda, T. Chem. Pharm. Bull. 1994, 42, 1399-1409.

NP010465I

[^0]: * To whom correspondence should be addressed. Tel and Fax: +81-86 251-7936. E-mail: yoshida@pheasant.pharm.okayama-u.ac.jp.
 + Okayama University.
 \# University Ferhat Abbas.

